A man with short brown hair, wearing a dark suit jacket and a light blue collared shirt, smiles at the camera against a plain grey background.

Bridging physics, mathematics, and computing: An interview with Gustaaf Jacobs

Professor Gustaaf Jacobs, Scholar in Residence at Digital Futures from October 2024 to January 2025, is a leading expert in scientific computing and the physics of turbulent flows, chemically reacting systems, and aerodynamics. A full professor at San Diego State University and an Associate Fellow of the AIAA, he was recognized among Stanford’s Top 2% Most Highly Cited Scientists in 2022. His career spans academic and leadership roles at institutions like Delft University, MIT, and Brown University, and he is a recipient of the prestigious US Air Force Office of Scientific Research Young Investigator Award.

Professor Jacobs’ work focuses on developing rigorous algorithms to enhance the accuracy and efficiency of multi-scale physics simulations. During his residency, hosted by Professor Jennifer K. Ryan at KTH, he is collaborating on the development of regularized discontinuous Galerkin formulations and multi-scale modeling kernels. His efforts integrate mathematics, physics, and numerics to advance simulations of turbulent flows in renewable energy and propulsion systems.

In this interview, Professor Jacobs shares his insights into multi-scale modeling, his interdisciplinary research journey, and the collaborative future of scientific computing.

As a Scholar in Residence at Digital Futures, you’re collaborating on the development of multi-scale physics modeling kernels. What excites you most about this opportunity, and how does it build on your extensive work in scientific computing and turbulent flow physics?

– A distribution kernel is a pivotal component in connecting dynamical systems that govern the principal components of a given multi-physics problem. My work has focused on coupling several such multi-physics problems in the areas of particle-laden flows, plasmas, and chemically reacting flows. A generalized perspective necessitates consistent mathematical analysis. Digital Futures is providing the opportunity to explore this analysis in collaboration with leaders in the field at KTH.

Your research focuses on creating mathematically rigorous algorithms that enhance the accuracy and efficiency of multi-scale physics simulations. Could you elaborate on the challenges of balancing mathematical rigor, computational efficiency, and practical application in these algorithms?

– A rigorous proof of the sufficient properties that ensure the robustness and accuracy of a kernel approximation provides the rules of thumb for designing an algorithm. Accuracy estimates and robustness are invaluable for solving a problem with minimum resolution requirements, thus ensuring optimal usage of computational resources. This, in turn, facilitates the rapid prototyping of engineering systems.

A significant part of your residency involves developing and testing regularized discontinuous Galerkin formulations for turbulent flow problems. Why are these formulations critical for advancing our understanding and simulation of multi-scale physics phenomena?

– Particle-laden and (fuel) droplet-laden turbulent flows are central to the operation of power-generating units in renewable and green energy systems, as well as propulsion systems. High-fidelity predictive tools, such as high-order discontinuous Galerkin-based flow solvers, are essential for accurately predicting and understanding mixing characteristics and related combustion efficiency and cooling strategies.

Over the years, you’ve held diverse roles in academia and industry, from serving as a Program Chair at conferences to mentoring early-career researchers. How have these experiences shaped your approach to fostering innovation and collaboration in your field?

– With the advent of data-driven science and related model development, engineering, science, mathematics, and their subfields are increasingly overlapping. Machine learning, for example, requires data generation from the physics of engineering systems, predictive tools and their numerical analysis, reduced models and dynamical systems mathematics, statistical analysis, advanced manifold fitting, and much more. This has brought fields closer together and made them much less siloed than they might have been in the past. Most modern research portfolios are collaborative and multidisciplinary as a result. Serving in various roles in academia and industry has exposed me to the multiple facets of science, mathematics, and engineering, shaping my broad program of research and fostering collaborations with a wide range of expertise.

With a career spanning from Delft University to MIT and now San Diego State University, your work bridges physics, mathematics, and computational engineering. What advice would you give to researchers looking to integrate interdisciplinary approaches into their work, especially in the field of scientific computing?

– This is a great question. A valuable lesson I have learned is that one should be eager to learn, broaden one’s horizons, and most importantly, enjoy the process. For me, the most gratifying aspect of an academic career is understanding a scientific problem from multiple perspectives. Visiting experiences, such as those provided by Digital Futures, are instrumental in enhancing one’s learning experience. Especially in the early stages of a career, if the opportunity exists to explore one’s scientific preferences, I would highly recommend it. Working with several renowned mentors has given me the opportunity to do exactly that and has instilled in me a strong desire for lifelong learning.

More news

A 2x2 grid of professional headshots featuring two men in the top row and one woman and one man in the bottom row, each smiling at the camera with their names labelled.

Four visionary Keynotes set to inspire at Digitalize in Sthlm 2025

06/11/2025

Digitalize in Sthlm returns this year with an exceptional lineup of keynote speakers exploring the frontiers...

A pilot wearing a helmet and oxygen mask sits in the cockpit of a fighter jet flying over the ocean, with three other jets visible ahead and to the sides in a clear blue sky.

Air Force Innovation in focus: Enhancing operational capabilities

30/10/2025

How does the Swedish Air Force use innovation and collaborate with academia, startups, and industry...

A man in a leather jacket and white shirt smiles in a modern lounge area with round tables, chairs, and yellow cushions. A colourful digital screen is displayed on a wood-panelled wall behind him.

Bridging High-Performance Computing and AI: Insights from Professor Allen D. Malony

24/10/2025

Professor Allen D. Malony, Scholar in Residence at Digital Futures (1 September 2025 – 28 January 2026), is...

Three men stand indoors beneath a GSA International banner. The man in the centre holds a plaque, and all three are smiling and wearing conference name badges. A glass display case is visible behind them.

Digital Futures researcher honored with GSA International Distinguished Career Award

21/10/2025

Digital Futures is proud to share that Professor Prosun Bhattacharya, one of our faculty members, is...