Six panels showing the progression of a blue substance emerging upwards from a horizontal surface, forming branching, tree-like structures as the sample number (n) increases from 0 to 1202. Scale bars are present.

Revolutionary breakthrough in Programmable Matter: Solid-liquid phase change pumping unleashes unprecedented shape-shifting abilities

In a groundbreaking study, Kerem Kaya and others in the team of Digital Futures researchers Danica Kragic and Wouter van der Wijngaart have unlocked the full potential of programmable matter by introducing a cutting-edge method called “solid-liquid phase change pumping.” Overcoming limitations in existing approaches, this innovative technique allows for free-form transfiguration and autonomous movement of solid objects with sub-millimetre precision.

The study entitled “Programmable Matter with Free and High-resolution Transfiguration and Locomotion (Article DOI: 10.1002/adfm.202307105) was published on 24 December 2023 in the high-impact journal Advanced Functional Materials.

Unlike previous methods constrained by shape freedom and resolution, solid-liquid phase change pumping offers a unique path towards a programmable material with unparalleled freedom in shape and autonomy. The ability to transform thin objects into any desired shape, change topologies (e.g., add or remove holes, split, merge), and navigate through narrow spaces without direct contact opens the door to transformative applications.

– I believe our findings are of a rather spectacular nature, as we are the first to show contactless reshaping of objects, without limitations, in 2D, says Wouter van der Wijngaart, Professor of Micro and Nanosystems at the Dept of Intelligent Systems at KTH Royal Institute of Technology.

The study focuses on creating programmable matter capable of free-shape transfiguration and locomotion, introducing a novel method that propels solid objects into dynamic motion. Solid-liquid phase change pumping, in short, melts a tiny fraction of a solid object, transports the molten material pocket through the solid object, and resolidifies the material at another position in the object. This technique enables the step-by-step deformation of objects at a sub-millimetre level, allowing for intricate and precise shape changes and transport of the object itself.

Objects can be manipulated through narrow constrictions before being seamlessly restored to their original form.

– The implications of this breakthrough are vast, with potential applications in “hard-to-reach” environments. Just think about such as space exploration, deep underground excavations, and deep-sea operations, explains Kerem Kaya, PhD student in the same Department. The ability to repurpose objects without direct contact becomes crucial in scenarios where physical access is challenging or impossible.

– Also, think about scenarios where material supply or removal is costly, such as adapting living spaces. The ability to reshape objects instead of replacing them could revolutionize industries dealing with expensive materials, offering a sustainable and cost-effective solution, continues Danica, Professor of Robotics in the same Department.

The researchers have so far demonstrated their approach on materials that are easy to melt and resolidify, such as certain plastics. Current efforts focus on speeding up the transformation and extending shape transformation from two to three dimensions.

According to the researchers, solid-liquid phase change pumping offers potentially transformative solutions in various fields.

– This technology could lead to advancements that were once deemed impossible. The potential for full topological shape freedom and autonomous movement opens new doors for innovation – from space missions to reconfiguring living spaces, concludes Wouter. The world awaits the practical implementation of this groundbreaking technology, which could redefine how we interact with the physical world, pushing the boundaries of what is possible in shape-shifting materials and autonomous object manipulation.

Link to the publication “Programmable Matter with Free and High-resolution Transfiguration and Locomotion” in the journal “Advanced Functional Materials”.

More news

A large group of people pose for a photo on outdoor stone steps in front of a brick building with large windows and trees, all dressed in business or smart casual attire, some wearing name badges.

French–Swedish Workshop on AI: Strengthening Cross-Border Collaboration for the Future of Artificial Intelligence

17/10/2025

The French–Swedish Workshop on AI, held on 16–17 October 2025 at the KTH Royal Institute of Technology in Stockholm, brought...

A blue banner reading Nobel Calling Stockholm, Nobel Prize Museum stands indoors, with blurred people walking by and wooden panel walls in the background.

Nobel Calling: Discovering how the digital society of the future is being shaped at Digital Futures

16/10/2025

On 8 October 2025, the Digital Futures hub opened its doors for Nobel Calling Stockholm, welcoming...

A person with short light brown hair and round orange glasses smiles slightly while wearing a grey shirt in a sunlit indoor space with blurred background.

Towards Human–AI Symbiosis: Google XR’s Mar Gonzalez-Franco to speak at Digitalize in Sthlm

15/10/2025

How will humans and AI collaborate in the future? As artificial intelligence continues to evolve,...

A smiling man wearing glasses and a suit holds an award certificate on stage, standing in front of a blue background with the word earpa and a stylised car outline.

Sacha Baclet wins “Best Young Researcher Elevator Pitch” award at EU Forum in Brussels

13/10/2025

Brussels, October 2025 — KTH young researcher Sacha Baclet has been awarded the prize for “Best Young Researcher...