

Controlling the digital power grid – what do we need to know?

Lars Nordström, <u>larsno@kth.se</u>

ittp://smartgridstavdardsmap.o

It appears to be terribly complicated.....

- To design, develop and control the digital power you need to know:
 - Power Systems
 - Power electronics
 - Dynamic systems and control
 - Optimisation
 - Electriticy markets
 - Communicaiton technology
 - Software development
 - Cybersecurity
 - Databases and data quality
 - Machine learning and AI
 - Sensor networks
 - Wireless communication
 - Weather forecasts
 - 5G, 6G, IoT
 -

Lets look at an example...

 Load Frequency Control is a secondary frequency control mechanism with one or two control objectives:

Restoring the frequency to nominal f_0

and/or

Restoring tie-line power flows to nominal

-
- Normally implemented as a Proportional Integrating (PI) Controller
 - Tuning of the C_{pi} and T_{Ni} parameter non-trivial
- Area Control Error to be minimised, based on setting of a.o. bias factor *B* per control area
- Output is new setpoints for P_{AGC} to be shared among participating generators.

$$\Delta P_{AGCi} = -(C_{pi} + \frac{1}{sT_{Ni}})\Delta e_i$$

$$ACE_i = \sum_{j \in \Omega_i} (P_{Ti}^j - P_{T0i}^j) + B_i(f - f_0) \quad i = 1, 2, \dots, N$$
.

Core Knowledge: Electrical Engineering Systems Engineering Control Systems

> **Tools & Tricks:** MATLAB/Simulink Python scripting PSS/E - PowerFactory

aFRR – automatic Frequency Restoration

- In an unbundled / deregulated power market, generation is separated from grid operation
- The market perspective of LFC is aFRR
- Balance Service Providers owning resources bid into markets indicating their willingness to participate in LFC
 - Amounts of Power, Duration and time,...
- Participation across several markets optimises revenue streams for assets

Core Knowledge: Electricity Markets Optimisation Forecasting

> **Tools & Tricks:** GAMS Python scripting

- For market transparency, effectiveness and efficiency data must be shared among several actors – data that includes :
 - Technical parameters, e.g. amount of reserves needed, timeframe
 - Bids, amounts, values
 - Acceptance of bids
 - Control signals (ACE, setpoints, participation factors)
 - Acknowledgements
 - Billing information

Core Knowledge:

Information modeling Software Engineering Standards

> **Tools & Tricks:** UML Enterprise Architect

European Network of Transmission System Operators for Electricity

ENTSO-E AUTOMATIC FREQUENCY RESTORATION RESERVE PROCESS

IMPLEMENTATION GUIDE

2021-01-27 APPROVED DOCUMENT VERSION 1.1

KTH vetenskap och konst

¹ Information and Communication Technology

Core Knowledge:

Communication systems Computing platforms Cybersecurity Communication Protocols

Tools & Tricks: SQL, XML, ftp, http, json, ssh, cron, VPN,...

- The implementation of an LFC function across several actors in an unbundled and de-regulated power market depends on computing and communication.
- Often involving critical systems and sensitive data
- Secure and reliable transmission, processing and storing of data including e.g.:
 - Setpoints and measurements. E.g. P and f_0
 - Bids from service providers
 - Optimisation of parameters
 - Historical records for billing, etc etc

A single person* **cannot know** all the disciplines needed for a complete understanding of how an LFC function is implemented across multiple actors in an de-regulated power system.

The quality of the LFC function is never better than the **weakest link** in the chain from control system, via market setuo, actor interaction and ICT platform

Designing, developing and deploying new functions in the Digital Power grid can be **time consuming and expensive** due to lacking coordination and interoperability between the domains.

* OK, possibly some - but definitely not as many as are needed to develop the Digital Powergrid

So, what gets the job done?

- Based purely on personal experience and no scientific facts whatsoever....
- Form small teams of people (6 max) and make sure to cover all competencies in the team
- Ensure core knowledge in EE, only those individuals with clear knowedge of the core function can provide guidance on compromises, priorities and quality limits
- Share and present details of technical design choices e.g. algorithms, code and communication protocols – do not satisfy yourself with powerpoint slides. (nothing can be learned from slides)
- Foster an open curious environment where everyone can learn from eachother ask stupid questions.
- Work iteratively, so that there is always a small working prototype to relate new ideas to.

To know what you know and what you do not know, that is true knowledge.

-Confucius