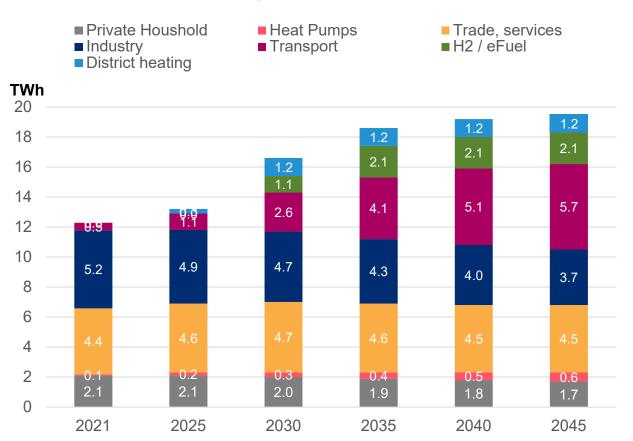
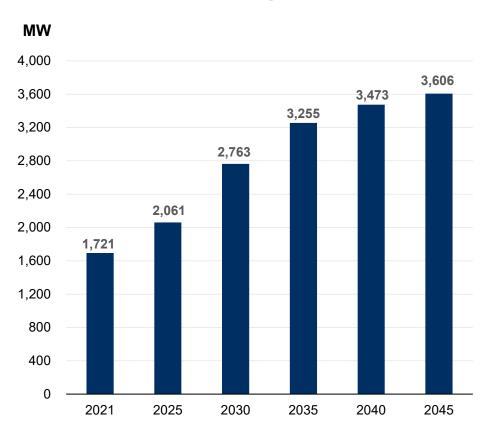


Our Grid



Stromnetz Hamburg 16.04.2024 | (C1) public | DigiSect - Stockholm


Demand Developments in Hamburg

electricity demand per sector

maximum grid load

Electricity demand will increase to 19.5 TWh by 2045; the maximum grid load to >3,600 MW. The strongest drivers are the forecast growth in **eMobility**, **heat pumps** and the production of **hydrogen / eFuels**.

Challenges in Grid Development

Resources	2022	construction output per year	Annual construction work for renovation and expansion until 2033	Plan 2033				
eed-in node (in units)	3		2 in 10 Jahren	3	950		150	
ransformer stations	55	2	>4	55		154		
Switchgear	22	1	1,5	22				
110-kV Transformator	110	9	>5	123				
HV-Grid (km)	950	4	30 ²	1.100				
MV-Substations	5.700	121	185	6.400				
MV-Grid (km)	5.570	180	196	6.500				
LV-Grid ¹ (km)	13.500	125	177	14.000				
1					 2022	Modernization	Expansion	Р

¹ without house connections

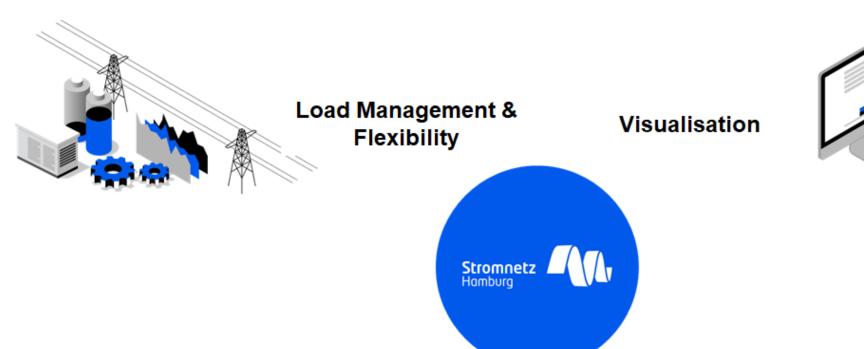
In order to achieve the climate protection targets in Hamburg, a significant expansion of the high-voltage grid is particularly necessary

² without HV-customer connections

Challenges in Grid Development

Resources	construction output per year		Annual construction work for renovation and expansion until 2033	Plan 2033	
Feed-in node (in units)	3		2 in 10 Jahren	3	
Transformer stations	55	2	>4	55	
Switchgear	22	1	1,5	22	
110-kV Transformator	110	9	>5	123	
HV-Grid (km)	950	4	30 ²	1.100	
MV-Substations	5.700	121	185	6.400	
MV-Grid (km)	5.570	180	196	6.500	
LV-Grid ¹ (km)	13.500	125	177	14.000	

¹ without house connections


Public events require a great deal of planning

In order to achieve the climate protection targets in Hamburg, a significant expansion of the high-voltage grid is particularly necessary

² without HV-customer connections

Solution: The Intelligent Integrated Planning & Operation

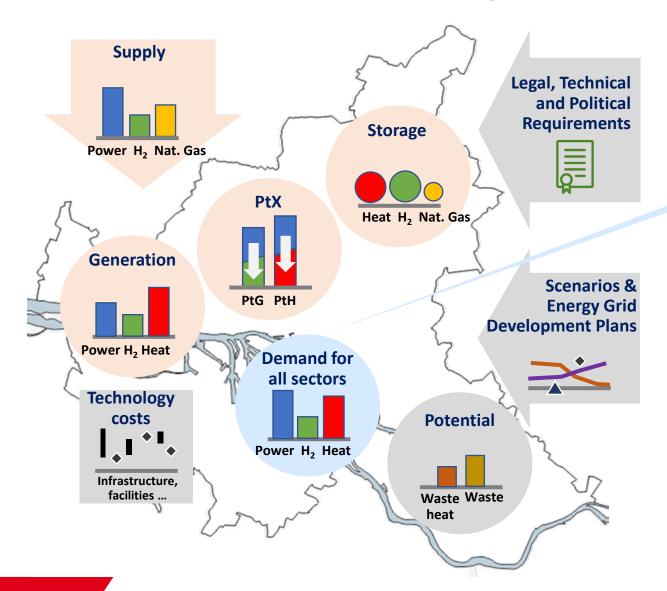
Digitalisation & security

Supported by:

on the basis of a decision by the German Bundestag

Hamburger **Energiewerke**

unterstützt durch:



iNEP: Demand-driven Planning

Sectors are:

- Industry
- **Mobility**
- Households

"Sector-coupled Energy Systems"?

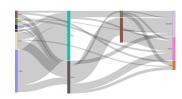
- **iNeP defines "sectors" by different** sectors of energy consumers with dedicated demand of energy sources
- coupling of different and/or demanded energy sources (power, gases, heat) will not only occur on energy grid level, but also at customers site / consumers

Requirements in iNEP

Scenarios

> The respective energy requirements in the area anticipated for 2023 and 2045

Regionalization


Defining areas relevant for integrated energy planning

Interactive

- > interaction with the platform
- graphical display of areas

Energy Balance

Energy balance of different coverage scenarios

Nodes⁴ requirements

Individual requirements for consumers and producers and coupling points

DiP Data-supported Interactive Platform

iNeP V1.0	iNeP V2.0			
Show	Process, design, manage and export			
Universally valid	Customizable			
Static demand determination scenario	Adjustable scenarios for demand determination, demand coverage and planning scenarios			
demands	demands and demand coverage			
GIS data for the distribution	GIS data for the derivation of scenarios (→ bottom-up)			

Data-supported

Platform

The DIP enables grid developers/planners to:

- > enter, coordinate, retrieve and track planning-relevant information and boundary conditions
- Design alternative solutions and coordinate them with the other companies.

(External) Stakeholders can be involved in the planning process and the discourse with the DIP

Screenshot: DIP

Coverage requirement

means representation of demand at all levels

- Space heating from public data "heat register"
- Photovoltaic potential as
- General electricity demand of households
- > Electricity demand for electromobility in private households
- Hydrogen demand at filling stations and in industry

as well as possible supply potentials of feeders (CHP, industrial potentials, heating plants...)

	2023		2045		
	Arbeit [kWh/a]	Leistung [kW]	Arbeit [kWh/a]	Leistung [kW]	
Nutzenergie Massenobjekte					
Massenbedarf: Max. PV Potential	0	0	0	(
Massenbedarf: Raumwärme	808.006.744	417.381	506.230.681	232.883	
Massenbedarf: Strom 04	140.491.197	24.904	113.615.123	14.346	
Massenbedarf: Strom MOB	5.231.040	2.047	29.865.292	11.72	
Nutzenergie Individualobjekte (exkl. Wandler)					
H2 stofflich	9.807.083	8.177	46.878.027	46.510	
Strom 04	0	0	0		
Strom 10	143.280.775	58.423	345.847.599	77.41	
Warme HT	2.362.763	516	2.835.316	61	
Warme MT	206.356.562	44.023	210.867.292	44.98	
Bereitstellungsvorgabe Wandler					
Bereitstellungsstrom 04	0	0	0	1.0	
Bereitstellungsstrom 10	10.500.000	1.500	0		
Bereitstellungswasserstoff	0	0	0	(1)	
Bereitstellungswärme	106.195.000	30.760	0		

Flexibility/Load Management as Key Measure till Grid Expansion

➤ Future

ELBE, DISEGO

Stromnetz Hamburg

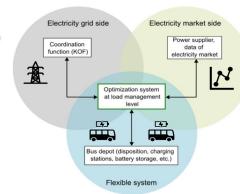
Not served power planning reserves Temporary operational Grid capacity Today

Project goal,

to develop a concept to be able to offer a short-term grid connection product for controllable flexible loads until the necessary grid reinforcement to realize the full required grid connection capacity has been implemented.

Temporary operational reserves are used for this purpose.

FlexOption HV-Grid


FlexOption

MV-Grid KOLA, FlexOption

KoLa – Flexibility Coordination btw. Energy and Transport **Electrified Public Transport Use-case**

2022-2026

- Objectives
 - Development of a "coordination function" to ensure grid stability while offering flexibilities
 - Optimal charging and flexibility management of electrified bus depot
 - Validation of overall system in distributed laboratory setup and in field test

Federal Ministry for Economic Affairs and Climate Action

Supported by:

Thank you for

the attention

Dr. Davood Babazadeh

Innovation Management

E-Mail

davood.babazadeh@ stromnetz-hamburg.de