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Saša V. Raković Minkowski, Lyapunov, and Bellman KTH, Stockholm, January 18, 2022 3



Minkowski Function

A convex compact subset S of Rn that contains the origin as an interior
point is a proper C–set in Rn.

The Minkowski function of a proper C–set S in Rn:
∀x ∈ Rn, g(S, x) = minη{η : x ∈ ηS, η ≥ 0}.

Continuous and sublinear.

g(S, x) = 0 for x = 0.

0 < g(S, x) <∞ for x ∈ Rn \ {0}.
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Minkowski Function (Continued)

Any vector norm | · |S on Rn is generated by the Minkowski function
g(S, ·) of a 0–symmetric proper C–set S in Rn.
The closed unit norm ball is S.

∑n
i=1 |xi |

√
x2

1 + x2
2 + . . . + x2

n maxi∈{1,2,...,n} |xi |

Special cases include `1, `2, `∞, ... vector norms.
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Support Function

The support function of a nonempty closed convex set S in Rn:
∀x ∈ Rn, h(S, x) = sups{xT s : s ∈ S}.

A fundamental 1–to–1 correspondence:

If S is a nonempty compact, convex set in Rn, its support function
h(S, ·) : Rn → R is sublinear.

If f (·) : Rn → R is sublinear function, there is a unique nonempty,
compact convex set S in Rn with the support function f (·).
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Support Function (Continued)

For any nonempty, closed, convex sets S, S1, S2 in Rn and any M ∈ Rp×n:

S1 ⊆ S2 ⇐⇒ ∀x ∈ Rn, h(S1, x) ≤ h(S2, x).

∀x ∈ Rn, h(S1 ⊕ S2, x) = h(S1, x) + h(S2, x).

∀y ∈ Rp, h(MS, y) = h(S,MT y).

S1 ⊕ S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2} is the Minkowski set addition.
MS := {Ms : s ∈ S} is the image of S under matrix M.
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Polarity of Minkowski and Support Functions

The polar set S∗ of a set S, 0 ∈ S in Rn: S∗ := {x : ∀y ∈ S, yT x ≤ 1}.

Polar set pairs.

Fundamental Polarity Relationships:

If S is a proper C–set in Rn, its polar set
S∗ is also a proper C–set in Rn, and its
bipolar set (S∗)∗ is S, i.e., (S∗)∗ = S.

The Minkowski function g(S, ·) of a proper
C–set S in Rn is equal to the support
function h(S∗, ·) of its polar set S∗, i.e.,
for any proper C–set S in Rn,
∀x ∈ Rn, g(S, x) = h(S∗, x).
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Quadratic Lyapunov Inequality for Linear Dynamics

Linear dynamics: x+ = Ax , A ∈ Rn×n.
Quadratic decrease function: `(x) = xTQx , Q ∈ Rn×n.

Lyapunov inequality: ∀x ∈ Rn, V (Ax) + `(x) ≤ V (x).
Quadratic Lyapunov function: V (x) = xTPx , P ∈ Rn×n.
Linear matrix inequality: ATPA + Q ≤ P.

Fact: Take any Q ∈ Rn×n, Q = QT > 0 and any A ∈ Rn×n.

There exists a P ∈ Rn×n, P = PT > 0 such that ATPA + Q ≤ P if and
only if A is strictly stable.
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Quadratic Lyapunov Equation for Linear Dynamics

Linear dynamics: x+ = Ax , A ∈ Rn×n.
Quadratic decrease function: `(x) = xTQx , Q ∈ Rn×n.

Lyapunov equation: ∀x ∈ Rn, V (Ax) + `(x) = V (x).
Quadratic Lyapunov function: V (x) = xTPx , P ∈ Rn×n.
Linear matrix equation: ATPA + Q = P.

Fact: Take any Q ∈ Rn×n, Q = QT > 0 and any A ∈ Rn×n.

There exists a P ∈ Rn×n, P = PT > 0 such that ATPA + Q = P if and
only if A is strictly stable, in which case P =

∑∞
k=0(Ak)TQAk is unique.
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Minkowski–Lyapunov Inequality for Linear Dynamics

Linear dynamics: x+ = Ax , A ∈ Rn×n.
Minkowski decrease function: `(x) = g(Q, x), Q ⊂ Rn.
Generator set: Q is a proper C–set in Rn.

Lyapunov inequality: ∀x ∈ Rn, V (Ax) + `(x) ≤ V (x).
Minkowski–Lyapunov function: V (x) = g(P, x), P ⊂ Rn.
Generator set: P is a proper C–set in Rn.
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Minkowski–Lyapunov Equation for Linear Dynamics

Linear Dynamics: x+ = Ax , A ∈ Rn×n.
Minkowski decrease function: `(x) = g(Q, x), Q ⊂ Rn.
Generator set: Q is a proper C–set in Rn.

Lyapunov equation: ∀x ∈ Rn, V (Ax) + `(x) = V (x).
Minkowski–Lyapunov function: V (x) = g(P, x), P ⊂ Rn.
Generator set: P is a proper C–set in Rn.
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Polarity of Stability and Robust Positive Invariance

Minkowski–Lyapunov inequality:
∀x ∈ Rn, g(P,Ax) + g(Q, x) ≤ g(P, x).

Polar form of Minkowski–Lyapunov inequality:
∀x ∈ Rn, h(P∗,Ax) + h(Q∗, x) ≤ h(P∗, x), i.e.,
∀x ∈ Rn, h(ATP∗, x) + h(Q∗, x) ≤ h(P∗, x), i.e.,
∀x ∈ Rn, h(ATP∗ ⊕Q∗, x) ≤ h(P∗, x).

Equivalent set inclusion:
ATP∗ ⊕Q∗ ⊆ P∗.

Polar form of equivalent set inclusion:
P ⊆

(
ATP∗ ⊕Q∗

)∗
.
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Fundamental Property of Minkowski–Lyapunov Inequality

Minkowski–Lyapunov inequality:
∀x ∈ Rn, g(P,Ax) + g(Q, x) ≤ g(P, x).

Equivalent set inclusion:
ATP∗ ⊕Q∗ ⊆ P∗.

Polar form of equivalent set inclusion:
P ⊆

(
ATP∗ ⊕Q∗

)∗
.

Theorem III–1. Take any proper C–set Q in Rn and any A ∈ Rn×n.

The Minkowski function x 7→ g(P, x) of a proper C–set P in Rn verifies
the Minkowski–Lyapunov inequality for x+ = Ax with the Minkowski
decrease function x 7→ g(Q, x) if and only if the polar set P∗ of P verifies
set inclusion ATP∗ ⊕Q∗ ⊆ P∗, or, equivalently, if and only if the set P
verifies set inclusion P ⊆

(
ATP∗ ⊕Q∗

)∗
.
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Polar Linear Dynamics and Robust Positive Invariance

Linear Dynamics: x+ = Ax , A ∈ Rn×n.
Minkowski decrease function: `(x) = g(Q, x), Q ⊂ Rn.
Generator set: Q is a proper C–set in Rn.

Polar Linear Dynamics: z+ = AT z + w .
Polar disturbance: w ∈ W, W ⊂ Rn.
Disturbance set: W := Q∗ is a proper C–set in Rn.

A set Z is robust positively invariant for z+ = AT z + w with w ∈ W if
and only if ATZ ⊕W ⊆ Z.

A set Z is the minimal robust positively invariant for z+ = AT z + w with
w ∈ W if and only if ATZ ⊕W ⊆ Z and Z is minimal with respect to set
inclusion over all (nonempty closed) robust positively invariant sets for
z+ = AT z + w with w ∈ W.
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Fundamental Property of Minkowski–Lyapunov Inequality

Minkowski–Lyapunov inequality:
∀x ∈ Rn, g(P,Ax) + g(Q, x) ≤ g(P, x).

Equivalent set inclusion:
ATP∗ ⊕Q∗ ⊆ P∗.

Theorem III–2. Take any proper C–set Q in Rn and any A ∈ Rn×n.

The Minkowski function x 7→ g(P, x) of a proper C–set P in Rn verifies
the Minkowski–Lyapunov inequality for x+ = Ax with the Minkowski
decrease function x 7→ g(Q, x) if and only if the polar set P∗ of P is a
robust positively invariant set for z+ = AT z + w with w ∈ W, W := Q∗.
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Solvability of Minkowski–Lyapunov Inequality

Minkowski–Lyapunov inequality:
∀x ∈ Rn, g(P,Ax) + g(Q, x) ≤ g(P, x).

Equivalent set inclusion:
ATP∗ ⊕Q∗ ⊆ P∗.

Theorem III–3. Take any proper C–set Q in Rn and any A ∈ Rn×n.

There exists a proper C–set P in Rn whose Minkowski function g(P, ·)
verifies the Minkowski–Lyapunov inequality for x+ = Ax with the
Minkowski decrease function x 7→ g(Q, x) (equivalently, whose polar set
P∗ is a robust positively invariant set for z+ = AT z + w with
w ∈ W, W := Q∗) if and only if A is strictly stable.
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Refined Polarity of Stability and Robust Positive Invariance

Minkowski–Lyapunov equation:
∀x ∈ Rn, g(P,Ax) + g(Q, x) = g(P, x).

Polar form of Minkowski–Lyapunov equation:
∀x ∈ Rn, h(P∗,Ax) + h(Q∗, x) = h(P∗, x), i.e.,
∀x ∈ Rn, h(ATP∗, x) + h(Q∗, x) = h(P∗, x), i.e.,
∀x ∈ Rn, h(ATP∗ ⊕Q∗, x) = h(P∗, x).

Equivalent set equation:
ATP∗ ⊕Q∗ = P∗.

Polar form of equivalent set equation:
P =

(
ATP∗ ⊕Q∗

)∗
.
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Fundamental Property of Minkowski–Lyapunov Equation

Minkowski–Lyapunov equation:
∀x ∈ Rn, g(P,Ax) + g(Q, x) = g(P, x).

Equivalent set equation:
ATP∗ ⊕Q∗ = P∗.

Polar form of equivalent set equation:
P =

(
ATP∗ ⊕Q∗

)∗
.

Theorem III–4. Take any proper C–set Q in Rn and any A ∈ Rn×n.

The Minkowski function x 7→ g(P, x) of a proper C–set P in Rn verifies
the Minkowski–Lyapunov equation for x+ = Ax with the Minkowski
decrease function x 7→ g(Q, x) if and only if the polar set P∗ of P solves
the fixed point set equation ATP∗ ⊕Q∗ = P∗, or, equivalently, if and only
if the set P solves the fixed point set equation P =

(
ATP∗ ⊕Q∗

)∗
.
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Fundamental Property of Minkowski–Lyapunov Equation

Minkowski–Lyapunov equation:
∀x ∈ Rn, g(P,Ax) + g(Q, x) = g(P, x).

Equivalent set equation:
ATP∗ ⊕Q∗ = P∗.

Theorem III–5. Take any proper C–set Q in Rn and any A ∈ Rn×n.

The Minkowski function x 7→ g(P, x) of a proper C–set P in Rn verifies
the Minkowski–Lyapunov equation for x+ = Ax with the Minkowski
decrease function x 7→ g(Q, x) if and only if the polar set P∗ of P is the
minimal robust positively invariant set for z+ = AT z + w with
w ∈ W, W := Q∗.
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Solvability of Minkowski–Lyapunov Equation

Minkowski–Lyapunov equation:
∀x ∈ Rn, g(P,Ax) + g(Q, x) = g(P, x).

Equivalent set equation:
ATP∗ ⊕Q∗ = P∗.

Theorem III–6. Take any proper C–set Q in Rn and any A ∈ Rn×n.

There exists a proper C–set P in Rn whose Minkowski function g(P, ·)
verifies the Minkowski–Lyapunov equation for x+ = Ax with the
Minkowski decrease function x 7→ g(Q, x) (equivalently, whose polar set
P∗ is the minimal robust positively invariant set for z+ = AT z + w with
w ∈ W, W := Q∗) if and only if A is strictly stable, in which case
P =

(⊕∞
k=0(AT )kQ∗

)∗
is unique.
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Theoretical and Computational Ramifications

Theoretical Ramification.
The stability analysis via the Minkowski–Lyapunov functions for x+ = Ax
with the Minkowski decrease function x 7→ g(Q, x) is conceptually
identical to the robust positive invariance analysis, over the space of
proper C–sets, for z+ = AT z + w with w ∈ W, W := Q∗.

Computational Ramification.
The computation of the Minkowski–Lyapunov functions for x+ = Ax with
the Minkowski decrease function x 7→ g(Q, x) is in an essential
one–to–one correspondence with the computation of proper C robust
positively invariant sets for z+ = AT z + w with w ∈ W, W := Q∗.
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Quadratic Bellman Inequality for Linear Systems

Linear system: x+ = Ax + Bu,
(A,B) ∈ Rn×n ×Rn×m.

Quadratic stage cost function: `(x , u) = xTQx + uTRu,
(Q,R) ∈ Rn×n ×Rm×m.

Quadratic Bellman function: V (x) = xTPx ,
(a.k.a. cost–to–go function) P ∈ Rn×n.

Bellman functional dynamics: ∀x ∈ Rn,
(Value function) V+(x) := minu V (Ax + Bu) + `(x , u).
(Optimizer function) u+(x) := arg minu V (Ax + Bu) + `(x , u).

Quadratic Bellman inequality: ∀x ∈ Rn, V+(x) ≤ V (x).
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Quadratic Bellman Equation for Linear Systems

Linear system: x+ = Ax + Bu,
(A,B) ∈ Rn×n ×Rn×m.

Quadratic stage cost function: `(x , u) = xTQx + uTRu,
(Q,R) ∈ Rn×n ×Rm×m.

Quadratic Bellman function: V (x) = xTPx ,
(a.k.a. cost–to–go function) P ∈ Rn×n.

Bellman functional dynamics: ∀x ∈ Rn,
(Value function) V+(x) := minu V (Ax + Bu) + `(x , u).
(Optimizer function) u+(x) := arg minu V (Ax + Bu) + `(x , u).

Quadratic Bellman equation: ∀x ∈ Rn, V+(x) = V (x).
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Essential Equivalence of Bellman and Riccati Dynamics

Fact. Take any matrices Q ∈ Rn×n, Q = QT > 0,
R ∈ Rm×m, R = RT > 0 and P ∈ Rn×n, P = PT > 0 and any matrix
pair (A,B) ∈ Rn×n ×Rn×m.

The Bellman functional dynamics

∀x ∈ Rn, V+(x) = min
u

V (Ax + Bu) + `(x , u)

= xTP+x , and

u+(x) = arg min
u

V (Ax + Bu) + `(x , u)

= K+x

is essentially equivalent to the Riccati matrix dynamics

P+ = Q + ATPA− ATPB(R + BTPB)−1BTPA, and

K+ = −(R + BTPB)−1BTPA.
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Finite Horizon Linear Quadratic Regulator

Fact. Take any matrices Q ∈ Rn×n, Q = QT > 0,
R ∈ Rm×m, R = RT > 0 and P ∈ Rn×n, P = PT > 0 and any matrix
pair (A,B) ∈ Rn×n ×Rn×m.

Iteration of the Bellman functional dynamics, or, equivalently, the Riccati
matrix dynamics

∀x ∈ Rn, V+(x) = xTP+x , and

u+(x) = K+x , with

P+ = Q + ATPA− ATPB(R + BTPB)−1BTPA, and

K+ = −(R + BTPB)−1BTPA

yields the finite horizon linear quadratic regulator.
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Fundamental Property of Quadratic Bellman Inequality

Fact. Take any matrices Q ∈ Rn×n, Q = QT > 0,
R ∈ Rm×m, R = RT > 0 and P ∈ Rn×n, P = PT > 0 and any matrix
pair (A,B) ∈ Rn×n ×Rn×m.

The quadratic Bellman inequality

∀x ∈ Rn, V+(x) ≤ V (x),

is essentially equivalent to the Riccati matrix inequality

P+ ≤ P i.e., Q + ATPA− ATPB(R + BTPB)−1BTPA ≤ P.

Saša V. Raković Minkowski, Lyapunov, and Bellman KTH, Stockholm, January 18, 2022 31



Solvability of Quadratic Bellman Inequality

Fact. Take any matrices Q ∈ Rn×n, Q = QT > 0,
R ∈ Rm×m, R = RT > 0 and any matrix pair (A,B) ∈ Rn×n ×Rn×m.

There exists a P ∈ Rn×n, P = PT > 0 verifying the quadratic Bellman
inequality, or, equivalently, the Riccati matrix inequality

Q + ATPA− ATPB(R + BTPB)−1BTPA ≤ P

if and only if (A,B) is strictly stabilizable.

Analogous conclusions to this and previous facts hold when
`(x , u) = (x , u)TC (x , u) for any C ∈ R(n+m)×(n+m), C = CT > 0.
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Fundamental Property of Quadratic Bellman Equation

Fact. Take any matrices Q ∈ Rn×n, Q = QT > 0,
R ∈ Rm×m, R = RT > 0 and P ∈ Rn×n, P = PT > 0 and any matrix
pair (A,B) ∈ Rn×n ×Rn×m.

The quadratic Bellman equation, i.e., the fixed point of Bellman functional
dynamics

∀x ∈ Rn, V+(x) = V (x)

is essentially equivalent to the Riccati matrix equation, i.e., the fixed point
of the Riccati matrix dynamics

P+ = P i.e., Q + ATPA− ATPB(R + BTPB)−1BTPA = P.
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Infinite Horizon Linear Quadratic Regulator

Fact. Take any matrices Q ∈ Rn×n, Q = QT > 0,
R ∈ Rm×m, R = RT > 0 and P ∈ Rn×n, P = PT > 0 and any matrix
pair (A,B) ∈ Rn×n ×Rn×m.

The quadratic Bellman equation, or, equivalently, the Riccati matrix
equation

∀x ∈ Rn, V+(x) = V (x) = xTPx , and

u+(x) = u(x) = Kx , with

P = Q + ATPA− ATPB(R + BTPB)−1BTPA, and

K = −(R + BTPB)−1BTPA

yields the infinite horizon linear quadratic regulator.
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Solvability of Quadratic Bellman Equation

Fact. Take any matrices Q ∈ Rn×n, Q = QT > 0,
R ∈ Rm×m, R = RT > 0 and any matrix pair (A,B) ∈ Rn×n ×Rn×m.

There exists a P ∈ Rn×n, P = PT > 0 verifying the quadratic Bellman
equation, or equivalently, the Riccati matrix equation

Q + ATPA− ATPB(R + BTPB)−1BTPA = P

if and only if (A,B) is strictly stabilizable, in which case P is unique.

Analogous conclusions to this and previous facts hold when
`(x , u) = (x , u)TC (x , u) for any C ∈ R(n+m)×(n+m), C = CT > 0.
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Minkowski–Bellman Inequality for Linear Systems

Linear system: x+ = Ax + Bu,
(A,B) ∈ Rn×n ×Rn×m.

Minkowski stage cost function: `(x , u) = g(C, (x , u)).
Generator set C is a proper C–set in Rn+m.
Minkowski–Bellman function: V (x) = g(P, x).
Generator set: P is a proper C–set in Rn.

Bellman functional dynamics: ∀x ∈ Rn,
(Value function) V+(x) := minu V (Ax + Bu) + `(x , u).
(Optimizer map) u+(x) := arg minu V (Ax + Bu) + `(x , u).

Minkowski–Bellman inequality: ∀x ∈ Rn, V+(x) ≤ V (x).
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Minkowski–Bellman Equation for Linear Systems

Linear system: x+ = Ax + Bu,
(A,B) ∈ Rn×n ×Rn×m.

Minkowski stage cost function: `(x , u) = g(C, (x , u)).
Generator set C is a proper C–set in Rn+m.
Minkowski–Bellman function: V (x) = g(P, x).
Generator set: P is a proper C–set in Rn.

Bellman functional dynamics: ∀x ∈ Rn,
(Value function) V+(x) := minu V (Ax + Bu) + `(x , u).
(Optimizer map) u+(x) := arg minu V (Ax + Bu) + `(x , u).

Minkowski–Bellman equation: ∀x ∈ Rn, V+(x) = V (x).
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What is J(x , u) = V (Ax + Bu) + `(x , u)?

∀(x , u) ∈ Rn ×Rm, J(x , u) = V (Ax + Bu) + `(x , u)

= g(P,Ax + Bu) + g(C, (x , u))

= h(P∗,Ax + Bu) + h(C∗, (x , u))

= h((A B)TP∗, (x , u)) + h(C∗, (x , u))

= h((A B)TP∗ ⊕ C∗, (x , u))

= g(((A B)TP∗ ⊕ C∗)∗, (x , u))

= g(T +, (x , u)).
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Characterization of J(x , u) = V (Ax + Bu) + `(x , u)

∀(x , u) ∈ Rn ×Rm, J(x , u) = V (Ax + Bu) + `(x , u)

= g(P,Ax + Bu) + g(C, (x , u))

= g(T +, (x , u)).

Theorem V–1. Take any proper C–sets P and C in Rn and Rn+m and
any matrix pair (A,B) ∈ Rn×n ×Rn×m.

∀(x , u) ∈ Rn ×Rm, J(x , u) = V (Ax + Bu) + `(x , u) = g(T +, (x , u)),

for a proper C–set T + := ((A B)TP∗ ⊕ C∗)∗ in Rn+m.
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What is V+(x) = minu g(T +, (x , u))?

∀(x , u) ∈ Rn ×Rm, J(x , u) = g(T +, (x , u)).

Let P+ be the projection of T + onto Rn, i.e., P+ := (I O)T +.
First,

∀x ∈ Rn, x ∈ g(P+, x)P+ and ∃v ∈ Rm : (x , v) ∈ g(P+, x)T +, i.e.,

min
u

g(T +, (x , u)) ≤ g(P+, x).

Second,

∀x ∈ Rn, ∃v ∈ Rm : (x , v) ∈
(

min
u

g(T +, (x , u))
)
T +, i.e.,

x ∈
(

min
u

g(T +, (x , u))
)
P+, i.e.,

g(P+, x) ≤ min
u

g(T +, (x , u)).

Hence,

∀x ∈ Rn, min
u

g(T +, (x , u)) = g(P+, x).
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What is u+(x) = arg minu g(T +, (x , u))?

∀(x , u) ∈ Rn ×Rm, J(x , u) = g(T +, (x , u)).

With P+ equal to the projection of T + onto Rn, i.e., P+ := (I O)T +,

∀x ∈ Rn, min
u

g(T +, (x , u)) = g(P+, x).

Hence,

∀x ∈ Rn, u+(x) = arg min
u

g(T +, (x , u))

= {u ∈ Rm : g(T +, (x , u)) ≤ g(P+, x)}
= {u ∈ Rm : (x , u) ∈ g(P+, x)T +}.
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What are V+(x) = minu J(x , u) and u+(x) = argV+(x)?

Pointwise Optimization Parameterwise Optimization
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V+(x) = minu J(x , u) and u+(x) = arg minu J(x , u)

∀(x , u) ∈ Rn ×Rm, J(x , u) = g(T +, (x , u)).

Theorem V–2. Take any proper C–sets P and C in Rn and Rn+m and
any matrix pair (A,B) ∈ Rn×n ×Rn×m.

∀x ∈ Rn, V+(x) = min
u

g(T +, (x , u))

= g(P+, x), and

u+(x) = arg min
u

g(T +, (x , u))

= {u ∈ Rm : (x , u) ∈ g(P+, x)T +},

for a proper C–set P+ := (I O)T + in Rn, with T + := ((A B)TP∗⊕C∗)∗.

Saša V. Raković Minkowski, Lyapunov, and Bellman KTH, Stockholm, January 18, 2022 45



Geometry of Minkowski–Bellman Dynamics

A = O, B = O with P+ = P = B2
2 and T + = C.

An example from a private communication with Zvi Artstein.
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What are properties of u+(x) = arg minu g(T +, (x , u))?

P+ := (I O)T + with T + := ((A B)TP∗ ⊕ C∗)∗ and

∀x ∈ Rn, u+(x) = {u ∈ Rm : (x , u) ∈ g(P+, x)T +}.

Theorem V–3. Take any proper C–sets P and C in Rn and Rn+m and
any matrix pair (A,B) ∈ Rn×n ×Rn×m.
The optimizer map u+ (·) : Rn ⇒ Rm is

Positively homogeneous of the first degree.
(i.e., ∀x ∈ Rn, ∀η ∈ R≥0, u+(ηx) = ηu+(x).)

Compact– and convex–valued.

Locally bounded.

Outer semicontinuous.

u+ (·) is a positively homogeneous of the first degree and continuous
function when it is single valued (e.g., when T + is strictly convex).
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Academic Example with Single Valued Optimizer

A = 1, B = 1 with
P+ = P = [−1, 1] and C = [−1, 1]× [−1, 1] and
T + = convh({(1,−1), ( 1

3 ,
1
3 ), (−1, 1), (−1

3 ,−
1
3 )}).
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Academic Example with Set Valued Optimizer

A = 1, B = 1 with
P+ = P = [−1, 1] and C = [−2, 2]× [−1, 1] and
T + = convh({(−1, 1), ( 1

2 ,
1
4 ), (1,−1

2 ), (1,−1), (−1
2 ,−

1
4 ), (−1, 1

2 )}).
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Essential Equivalence of Bellman and Minkowski Dynamics

Theorem V–4. Take any proper C–sets P and C in Rn and Rn+m and
any matrix pair (A,B) ∈ Rn×n ×Rn×m.

The Bellman functional dynamics

∀x ∈ Rn, V+(x) = min
u

g(P,Ax + Bu) + g(C, (x , u)), and

u+(x) = arg min
u

g(P,Ax + Bu) + g(C, (x , u))

is essentially equivalent to the Minkowski set dynamics

T + = ((A B)TP∗ ⊕ C∗)∗, and

P+ = (I O)T +.

In particular,

∀x ∈ Rn, V+(x) = g(P+, x), and

u+(x) = {u ∈ Rm : (x , u) ∈ g(P+, x)T +}.
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Finite Horizon Linear Minkowski Regulator

Theorem V–5. Take any proper C–sets P and C in Rn and Rn+m and
any matrix pair (A,B) ∈ Rn×n ×Rn×m.

Iteration of the Bellman functional dynamics, or, equivalently, the
Minkowski set dynamics

∀x ∈ Rn, V+(x) = g(P+, x), and

u+(x) = {u ∈ Rm : (x , u) ∈ g(P+, x)T +}, with

T + = ((A B)TP∗ ⊕ C∗)∗, and

P+ = (I O)T +

yields the finite horizon linear Minkowski regulator.
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Fundamental Property of Minkowski–Bellman Inequality

Minkowski–Bellman inequality

∀x ∈ Rn, V+(x) ≤ V (x) i.e., g(P+, x) ≤ g(P, x).

Equivalent set inclusion of related generator sets

P ⊆ P+ i.e., P ⊆ (I O)((A B)TP∗ ⊕ C∗)∗.

Theorem V–6. Take any proper C–set C in Rn+m and any matrix pair
(A,B) ∈ Rn×n ×Rn×m.

The Minkowski function x 7→ g(P, x) of a proper C–set P in Rn verifies
the Minkowski–Bellman inequality if and only if its generator set P verifies
set inclusion P ⊆ (I O)((A B)TP∗ ⊕ C∗)∗.
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Solvability of Minkowski–Bellman Inequality

Minkowski–Bellman inequality

∀x ∈ Rn, V+(x) ≤ V (x) i.e., g(P+, x) ≤ g(P, x).

Equivalent set inclusion of related generator sets

P ⊆ P+ i.e., P ⊆ (I O)((A B)TP∗ ⊕ C∗)∗.

Theorem V–7. Take any proper C–set C in Rn+m and any matrix pair
(A,B) ∈ Rn×n ×Rn×m.

There exists a proper C–set P in Rn whose Minkowski function
x 7→ g(P, x) verifies the Minkowski–Bellman inequality if and only if the
matrix pair (A,B) is strictly stabilizable.
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Fundamental Property of Minkowski–Bellman Equation

Theorem V–8. Take any proper C–sets P and C in Rn and Rn+m and
any matrix pair (A,B) ∈ Rn×n ×Rn×m.

The Minkowski–Bellman equation, i.e., the fixed point of Bellman
functional dynamics

∀x ∈ Rn, V+(x) = V (x) i.e., g(P+, x) = g(P, x)

is essentially equivalent to the fixed point of the Minkowski set dynamics

P = P+ i.e., P = (I O)((A B)TP∗ ⊕ C∗)∗.

In particular, the Minkowski function x 7→ g(P, x) of a proper C–set P in
Rn verifies the Minkowski–Bellman equation if and only if its generator set
P verifies the set equation P = (I O)((A B)TP∗ ⊕ C∗)∗.
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Infinite Horizon Linear Minkowski Regulator

Theorem V–9. Take any proper C–sets P and C in Rn and Rn+m and
any matrix pair (A,B) ∈ Rn×n ×Rn×m.

The Minkowski–Bellman equation

∀x ∈ Rn, V+(x) = V (x) i.e., g(P+, x) = g(P, x)

or, equivalently, the fixed point of the Minkowski set dynamics

P = P+ i.e., P = (I O)((A B)TP∗ ⊕ C∗)∗

yields the infinite horizon linear Minkowski regulator.
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Solvability of Minkowski–Bellman Equation

Minkowski–Bellman equation

∀x ∈ Rn, V+(x) = V (x) i.e., g(P+, x) = g(P, x).

Equivalent fixed point set equation

P = P+ i.e., P = (I O)((A B)TP∗ ⊕ C∗)∗.

Theorem V–10. Take any proper C–set C in Rn+m and any matrix pair
(A,B) ∈ Rn×n ×Rn×m.

There exists a proper C–set P in Rn whose Minkowski function
x 7→ g(P, x) verifies the Minkowski–Bellman equation if and only if the
matrix pair (A,B) is strictly stabilizable, in which case P is unique.

(Existence through Blaschke Selection Theorem.)
(Uniqueness through Minkowski set dynamics asymptotic stability.)
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Final Academic Example: Setting

A =

(
1 1
0 1

)
and B =

(
0.5
1

)
C = ((I O)TQ∗ ⊕ (0 I )TR∗)∗ with R = R∗ = [−1, 1] and

g(Q, (ξ1, ξ2)) =


`2((ξ1, ξ2)) when ξ1ξ2 ≤ 0

`∞((ξ1, ξ2)) when ξ1 ≥ 0 and ξ2 ≥ 0

`1((ξ1, ξ2)) when ξ1 ≤ 0 and ξ2 ≤ 0
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Final Academic Example: Iterates

Iterates of Minkowski set dynamics and Bellman functional dynamics
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Final Academic Example: Fixed Point

Iterates of Minkowski set dynamics

Fixed Point Value Function and Optimizer Map
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Minkowski Algebra for Proper C–Polytopes

For a proper C–polytope P = {x : ∀i ∈ IP , φTi x ≤ 1}:
P∗ = convh({φi : i ∈ IP}) and
(A B)TP∗ = convh({(ATφi ,B

Tφi ) : i ∈ IP}).

For a proper C–polytope C = {(x , u) : ∀i ∈ IC , θTi x + ϑTi u ≤ 1}:
C∗ = convh({(θi , ϑi ) : i ∈ IC}).

Hence,
(A B)TP∗ ⊕ C∗ = convh({(ATφi + θj ,B

Tφi + ϑj : (i , j) ∈ IP × IC}),
i.e., (possibly redundant) representation of T + is
T + = {(x , u) : ∀(i , j) ∈ IP ×IC , (ATφi + θj)

T x + (BTφi + ϑj)
Tu ≤ 1}.
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Explicit Characterization for Proper C–Polytopes

T + = {(x , u) : ∀i ∈ IT + , βTi x + γTi u ≤ 1}, and
P+ = (I O)T + so P+ = {x : ∀i ∈ IP+ , αT

i x ≤ 1}.

Value function V+(x) = g(P+, x) is given, for all x ∈ Rn, by

g(P+, x) = αT
i x when x ∈ P+

i with
∀i ∈ IP+ , P+

i = {x : ∀j ∈ IP+ \ {i}, (αj − αi )
T x ≤ 0}.

Optimizer Map u+(x) = {u : (x , u) ∈ g(P+, x)T +} is given, for all
x ∈ Rn, by

u+(x) = {u : ∀j ∈ IT + , γTj u ≤ (αi − βj)T x} when x ∈ P+
i .
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Summary for Proper C–Polytopes

Additional and refined properties (as applicable):

V+ (·) is, finitely many pieces, piecewise linear.

u+ (·) is polytopic–valued, its graph is a finite union of polyhedral cones,
and it is Lipschitz continuous with respect to the Hausdorff distance.

Words of Caution:

Fixed point value function CAN NOT be a priori guaranteed to be a
Minkowski function of a proper C–polytope.

Additional and refined properties CAN NOT be a priori guaranteed to
hold for fixed point value function and its optimizer.
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Theoretical and Computational Ramifications

Theoretical Ramification.
Polarity related theoretical ramifications are somewhat more involved.

Computational Ramification.
Computations via Bellman functional dynamics or Minkowski set dynamics
are essentially identical/equivalent in a well defined sense.

Utility.
“There is nothing so practical as a good theory.” (Kurt Lewin.)
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Generalizations with Literature (Published and in Progress)

X Robust Minkowski–Lyapunov Inequality and Equation

S. V. Raković. Robust Minkowski–Lyapunov Functions. Automatica. 120:
109168, 2021.

S. V. Raković. The Robust Minkowski–Lyapunov Equation. IEEE–TAC. In
Press, Corrected Proof.

X Control and Robust Control Minkowski–Lyapunov Inequalities

S. V. Raković. Control Minkowski–Lyapunov Functions. Automatica. 128:
109598, 2021.

S. V. Raković. Robust Control Minkowski–Lyapunov Functions. Automatica.
125: 109437, 2021.

X Robust Minkowski–Bellman Inequality and Equation

S. V. Raković and M. Jaćimović. Robust Linear Minkowski Regulator. In
Revision.
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Closing Message

Rudolf Kalman

Message from Rudolf Kalman’s Plenary Talk
(at the 17th IFAC World Congress 2008)
”... further significant advances when a ∈ A
becomes standard in control .... ”

Set–valued analysis and calculus for control available since 1960

Increasing popularity in contemporary control theory and applications

Conceptually powerful and topologically flexible

Nontrivial computational issues and challenges

Rather peculiarly, developed results I presented to you are novel!
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Credits

Zvi Artstein

for constructive feedback on numerous occasions.

Rafal Goebel

for helpful initial discussion.

Thank you! Any questions?
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