Open Research Day 9 April 2025

13:15-13:50

Parallel Sessions- *lightning talks followed by breakout session*

A108: Digitalized Built Environment I

Chair: Professor David Broman, KTH

A123: Digitalized Health Care I

Chair: Professor Hercules Dalianis, Stockholm University

2025-04-15

A123: Digitalized Health Care I

- Lightning talk: Session chair: Professor Hercules Dalianis, SU

- 1. DataLEASH in Action (CI)
- 2. Advanced Magnetic Resonance Elastography for the Brain (RP)
- 3. AI-based Positioning and Personalization Platform for Human Body Models HBMs (previous Virtual Baby Platform) (RP)
- 4. Al-based Asthma App using Spirometer (SI)
- 5. AI-based Detection of Colorectal Cancer in Primary Care AIDCCIP (SI)

DataLEASH in Action (CI) LEArning and SHaring under privacy constraints

Presenter Hercules Dalianis Department of Computer and Systems Sciences, DSV, SU

Team affiliated with KTH & SU

PI, Co-PI and Partners

- PI Tobias Oechtering, KTH
- Co-PIs Hercules Dalianis DSV, SU Cecilia Magnusson Sjöberg, Juridicum, SU
- Partners: SEB bank, Region Halland, National Library of Sweden (KB) but also IMY, The Swedish Authority for Privacy Protection -Datainspektionen

Authority for Privacy Prote

2025-04-15

Digital Futures

This project is the application of the DataLEASH results

- SEB Bank synthetic data generation for privacy-preserving data sharing of financial data between departments within the bank
 - Design uses PML framework developed in DataLEASH
- Region Halland De-identification and pseudonymisation of patient records for creating large language models
- IMY The Swedish Authority for Privacy Protection)

Synthetic Data (SEB)

- **Problem:** Reduce disclosure risk when sharing financial data *within* SEB!
 - Note, no legal requirement risk minimization of unintentional leak!
- Approach follows PrivBayes method
 - PML approach promises higher utility than DP since PML guarantees take prior into account!

Saeidian, Yavuzyilmaz, Grosse, Schuppe, Oechtering, "A Tight Context-aware Privacy Bound for Histogram Publication," submitted to IEEE SP Letters, Feb'25.

$$\ell(X \to y) \coloneqq \sup_{P_{U|X}} \ell_U(X \to y)$$

= $\log \sup_{P_{U|X}} \frac{\sup_{P_{\hat{U}|Y=y}} \mathbb{P}\left[U = \hat{U} \mid Y = y\right]}{\max_{u \in \mathcal{U}} P_U(u)}.$

2025-04-15

Digital Futures

Region Halland

 Region Halland has used our de-identifier and pseudonymiser SweDeClinBERT-NER to de-identify and pseudonymise patient records for use in AI applications. De-identification prelimin

Digit

- Area: Care wound
- 14 patient, 397 Swedish notes
- 10 000 words
- No names revealed

De-identification preliminary result

case: WoundCare-CAISR Health

#patients: 14	#besök: 68	#	# notes: 397
Status OK		372	94%
Status Need Correction		25	6%
Notes with two corrections		3	

fel genom antal ord: 0.0026

2025-04-15

IMY - The Swedish Authority for Privacy Protection

- Distinguish clearly between legal and technical privacy
 - Ethical considerations call for specific attention
- Be sure to customise current AI application to surrounding organisational framework
 - Clarify the scope
- International infrastructures are important
 - Note the impact of rule of law in international digital framework

Conclusions

- PML design framework can be applied to concrete applications
- Transfering privacy preserving tools such de-identification between domains seems to work and critical to build Privacy Preserving LLM
- DataLEASH in Action are contributing to the protection and privacy of data following Swedish and European Laws.

Thank you

Advanced Magnetic Resonance Elastography of the Brain

<u>Prof. Rodrigo Moreno</u> - CBH Prof. Lisa Prahl Wittberg – SCI KTH Royal Institute of Technology

Magnetic Resonance Elastography (MRE)

Aim: obtain mechanical properties of the brain

KTH is the only site in Sweden with this technology

Magnetic resonance elastography (MRE)

Aim: obtain mechanical properties of the brain

Multidimensional diffusion MRI (MD-dMRI)

Aim: measure the brain's sub-voxel microstructure

Micro-MRE (µMRE)

Virtual MRE (vMRE)

Use MD-dMRI to estimate brain tissue stiffness

Rodrigo Moreno Professor

Sarah Vandenbulcke Postdoctoral researcher

Lisa Prahl Wittberg Professor

Hampus Möller PhD researcher

Project team

Christian Gasser Professor

Henrik Palme PhD researcher

Christoffer Olsson Postdoctoral researcher

Thank you

Virtual Baby Platform Al-based Positioning and Personalization Platform for Human Body Models HBMs (RP)

Research Pairs Project: KTH & RISE

Xiaogai Li (co-PI, KTH) Giorgio Diena Siyuan Chen Natalia Lindgren Henrik Abrahamsson (co-PI, RISE) Yuju Son

Biomechanics/HBM

• Al & Digitalization

Finite element Human Body Models (HBMs)

- Finite element HBMs are **digitalized representations of the human body** and have emerged as significant tools for driving industrial innovation and clinical applications.
- These models are often a baseline and in a specified position. Personalization and positioning of HBMs are needed, but challenging and time consuming (requires today manual work and expertise)
- Our goal is to build an Al-based platform for automated, and robust personalization and positioning of HBMs, focusing on baby HBMs

2025-04-15

Digital Futures

Project progress

- We are investigating if and how neural networks and random forest models can be trained to automatically produce correct body element positions for a given set of joint angles.
 - Challenging problem with promising initial results
- Development of platform and interface
 - Sliders to control the positioning
 - Stickman for the positioning's preview

Visit us in the break-out session

• Welcome to our display in the break-out session for more information and a demo

Thank you

A3S: Al-based Asthma App using Spirometer

Zhendong Wang Postdoc at at KTH EECS / KI

Asthma diagnosis

- Background: Asthma is affecting about 10% of the European population, is a significant healthcare issue and is increasing by environmental deterioration
- Misdiagnosis: One-third of adults with asthma diagnosis in the 5 last years did not have asthma
- Goal: Objectively verify asthma diagnosis based on lung function measurements

Digital Futures

WWW.EFANET.ORG

27

Aim: Developing XAI algorithms of a seamlessly integrated clinical decision support system (CDSS) for the prediction of asthma diagnosis

- 1. GINA Report (Global Initiative for Asthma). 2023. https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023-Full-Report-2023-WMS.pdf.
- S. D. Aaron *et al.*, "Reevaluation of Diagnosis in Adults With Physician-Diagnosed Asthma," *JAMA*, vol. 317, no. 3, p. 269, Jan. 2017, doi: <u>10.1001/jama.2016.19627</u>.
- 3. A. Bjerg *et al.*, "Shorter time to clinical decision in workrelated asthma using a digital tool," *ERJ Open Research*, vol. 6, no. 3, Sep. 2020, doi: <u>10.1183/23120541.00259-</u> <u>2020</u>.

Digital Futures

Magnus Jansson Professor KTH

Björn Nordlund Docent KI/KS

Saikat Chatterjee Associate Professor KTH

Lynnea H. Myers *Postdoc KI*

Project team

Ioanna Milliou Assistant Professor SU

Zhendong Wang Postdoc KTH/KI

Thank you

Al-based Detection of Colorectal Cancer In Primary care

Jayanth Raghothama KTH CBH KTH + RCC Stockholm Gotland + RCC Väst

Problem

- Cancer patients present with early symptoms in primary care, which are often missed
- ColoRectal Cancer (CRC) is third most common type of cancer in Sweden
- Survival is excellent in Stages I and II, intermediate in Stage III, and poor in Stage IV
- CRC is the **most-missed** cancer in primary care, leading to increased burden in screening, subsequent care and reduced quality of life
- Screening is currently based on age (60-74)

2025-04-15

Goal

- Al solution for Early Warning in primary care, using primary care data
- Feed into national guidelines and clinical care pathways
- Use Natural Language Processing on clinician notes for information retrieval
- Machine Learning to develop prognostic models to:
 - Improve risk stratification
 - Personalised screening

Preliminary Results

).6 0.4 ١.2 Dataframe 1: DF without NLP (AUC = 0.86) Dataframe 2: DF with NLP (AUC = 0.84) 0.2 0.8 С 0.4 0.6 False Positive Rate

Receiver Operating Characteristic (ROC) Across Models

2025-04-15

Time Bias

 Models pick up on what doctors already know

Evaluation

- Crossover design with 10 physicians to assess:
 - Impact of models on their decision making
 - Biases
 - Interpretability

Data assessed longitudinally

Thank you

digital futures

PARTNERS

Stockholm University