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Abstract
The impact of de-identification on data qual-
ity and, in particular, utility for developing
models for downstream tasks has been more
thoroughly studied for structured data than for
unstructured text. While previous studies in-
dicate that text de-identification has a limited
impact on models for downstream tasks, it re-
mains unclear what the impact is with various
levels and forms of de-identification, in par-
ticular concerning the trade-off between preci-
sion and recall. In this paper, the impact of de-
identification is studied on downstream named
entity recognition in Swedish clinical text. The
results indicate that de-identification models
with moderate to high precision lead to simi-
lar downstream performance, while low preci-
sion has a substantial negative impact. Further-
more, different strategies for concealing sensi-
tive information affect performance to differ-
ent degrees, ranging from pseudonymisation
having a low impact to the removal of entire
sentences with sensitive information having a
high impact. This study indicates that it is
possible to increase the recall of models for
identifying sensitive information without neg-
atively affecting the use of de-identified text
data for training models for clinical named en-
tity recognition; however, there is ultimately a
trade-off between the level of de-identification
and the subsequent utility of the data.

1 Introduction

There is a growing demand for access to large
amounts of healthcare data in order to facilitate
research and development of tools for healthcare
management and clinical decision support, not least
as a result of the increasing application of AI and
machine learning in healthcare. However, to en-
able large-scale secondary use of sensitive health-
care data, there is a need for automatic privacy-
protecting methods for clinical text; manual de-
identification to ensure that the data does not con-

tain personal information is often prohibitively ex-
pensive.

Privacy-protecting methods for de-identification
of data generally address three privacy risks: (i)
the risk that someone’s records can be uniquely
identified in a dataset, (ii) preventing linkage from
one dataset to another, and (iii) the risk of inferring
sensitive information about an individual from the
dataset (EU, 2014). De-identification of unstruc-
tured clinical text commonly focuses on identifying
potentially identifiable information within prede-
fined classes in an approach based on named entity
recognition (NER), where protected health infor-
mation (PHI) is first identified and subsequently
obscured in some fashion (Meystre et al., 2010).
This technique addresses the first of the mentioned
privacy risks, and is the focus of this study.

De-identification techniques for structured data
generally address all three mentioned privacy risks,
and their impact on data quality and data utility
are more thoroughly studied than the impact of
de-identification on unstructured text (Iwuchukwu
et al., 2007). Research on structured data shows
that de-identification techniques applied to struc-
tured data may lead to reduced data quality (Xia
et al., 2015). For both structured and unstruc-
tured data, information necessary for answering
a research question may be identifying, and there-
fore required to be removed or altered to ensure
the privacy of data subjects. Furthermore, for
automatic de-identification, relevant information
may be changed or removed unintentionally due to
non-sensitive tokens being misclassified as sensi-
tive. Studies have indicated that de-identification
may erroneously alter or hide data significant for
other tasks; however, no significant impact has
so far been observed when comparing models for
downstream tasks trained with original versus de-
identified text data (Deleger et al., 2013; Obeid
et al., 2019; Meystre et al., 2014). It is, however,
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still not clear how the impact is related to various
forms and levels of de-identification, in particular
the trade-off between the precision and recall of
the de-identification system.

Common measures for evaluating de-
identification models for unstructured data
are precision, recall and F1-score. High recall
is generally preferred over high precision, as
the privacy of the data subjects is prioritised
over potential loss of document interpretability
(Ferrández et al., 2012). There is, at the same time,
a concern that poor precision would have a negative
impact on the quality of the data. In practice,
precision and recall are typically evaluated as
equally important when using F1-score as the
primary evaluation metric. However, if precision
of the de-identification model is of less importance
and it turns out that this does not have a clear
impact on using the data for some downstream
task, it would entail that de-identification systems
can be adapted for high coverage – but also that
recall should carry more weight than precision
when evaluating de-identification systems.

On the other hand, if de-identification impacts
the text data quality negatively, the concern is that
it would lower the possibility to use the data for
building models for various downstream tasks, i.e.
data utility would decrease once it has been de-
identified. Examples of downstream tasks are de-
tection of healthcare-associated infections, adverse
drug events and early cancer symptoms.

This study intends to answer the question of how
the precision of a de-identification system affects
data quality and, in particular, data utility by inves-
tigating how different levels of de-identification af-
fects the performance of downstream clinical NER.
In particular, the study aims to investigate the im-
pact of the trade-off between precision and recall,
as well as different methods for concealing PHIs.

2 Related Research

To our knowledge, no studies have specifically fo-
cused on the trade-off between precision and recall
and its impact on downstream tasks. There are,
however, studies that have investigated the impact
of de-identification.

A study by Meystre et al. (2014) showed that de-
identification reduces the information content, and
leads to the possible introduction of misleading in-
formation if tokens are replaced with pseudonyms.
In the study, only 0.81% of clinical named entity

annotations were erroneously detected as PHI, but
between 10 and 49% of all eponyms1 were mis-
classified as PHI. Fewer SNOMED-CT concepts
were also found, but this was largely explained by
incorrectly labelled SNOMED-CT concepts in the
original dataset. Studies on downstream tasks have,
however, not shown that de-identification has a neg-
ative impact. No significant differences could be
seen between using original text or de-identified
text as training data for clinical text classification
(Obeid et al., 2019). In contrast, one study ob-
served potentially significant benefits of training on
de-identified data for medication name extraction
(Deleger et al., 2013). The reduction of dimension
in de-identified text has been hypothesised to po-
tentially improve machine learning performance
(Obeid et al., 2019).

While previous studies have compared different
systems with various levels of precision (Obeid
et al., 2019; Meystre et al., 2014), no study has ex-
plicitly compared the impact the precision of a de-
identification system has on downstream tasks. In
Deleger et al. (2013), a recall bias was introduced
in two versions and those models were compared
to the original version. The systems with a slightly
lower precision performed similarly to the original
one in terms of performance on a medication name
extraction task.

3 Methods and Materials

In this paper, the impact of various forms of de-
identification – where a trade-off is made between
precision and recall of the model used for iden-
tifying PHI, as well as using different levels of
de-identification – on downstream NER tasks, in
this case identifying various clinical entity types, is
studied.

This paper uses four corpora: one for devel-
opment of de-identification models and three for
evaluating the impact of de-identification on down-
stream clinical NER. The method is presented first,
followed by a description of the corpora. The ex-
periments include five models for identifying PHI,
each one trading off precision for increased recall
to different extents, as well a four concealment
strategies that hide the identified PHI to different
degrees. These PHI models and concealment strate-
gies are used to de-identify three clinical corpora2,

1Eponyms are terms named after researchers, such
as Crohn’s disease, Cushing’s syndrome or Waldenström
macroglobulinemia.

2This research has been approved by the Swedish Ethical
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which, in turn, are used for training downstream
clinical NER models. The impact of using differ-
ent PHI models and concealment strategies is then
analysed from a number of different perspectives.

3.1 Methods

The impact of PHI models and concealment of PHI
is evaluated based on their performance as train-
ing data for downstream clinical NER tasks. The
overlap and co-occurrence between manually an-
notated clinical entities and predicted PHI are also
analysed to find out if certain PHI classes have
a bigger impact on the downstream clinical NER
tasks. Furthermore, the impact of de-identification
on eponyms are analysed on a new corpus specifi-
cally made for this purpose.

3.1.1 De-identification Process
The de-identification process consists of two main
steps: (i) identification of PHI and (ii) concealment
of PHI.

3.1.2 Optimising the F-score
Optimisation for different F-scores was carried out
to obtain models with higher recall at the expense
of precision, with the aim of investigating the ef-
fect this has on downstream clinical NER. Deleger
et al. (2013) introduced a recall bias by changing
the predicted label of non-PHI tokens with system-
generated probability less or equal to a threshold
of 0.95 to the PHI label with the second highest
probability. In this study, this was done in a simi-
lar fashion by changing predicted non-PHI labels
to their most likely alternative PHI label if the
the marginal score was lower than the set thresh-
old. The marginal probability specifies the model’s
confidence in predicting each label of an input se-
quence, without regard to the outcome of other
variables (Sutton and McCallum, 2012).

The thresholds were decided through grid search,
optimising toward five different F-scores: F1, F4,
F10, F20 and F40. F-score is the weighted mean
of precision and recall, see Eq. 1. For F1, equal
weight is given to precision and recall. For F2,
recall is given twice the weight of precision. Hence,
β will obtain the following values: 1, 4, 10, 20 and
50.

F -score : Fβ = (1 + β2) ∗ P ∗R
β2 ∗ P +R

(1)

Review Authority under permission no. 2019-05679.

3.1.3 Concealment Strategies
The next step is to conceal the PHI. The four con-
cealment strategies used in this study are: Pseudo,
Class, Mask and Remove.

• Original – No de-identification method. Ex-
ample: ”Eva slept.”

• Pseudo – To replace the identified PHI with a
surrogate. Example: ”Mary slept.”

• Class – To replace the identified PHI with the
PHI class. Example: ”<First Name> slept.”

• Mask – To replace the identified PHI with
XXXX. Example: ”XXXX slept.”

• Remove – To completely remove the identified
PHI and the sentence it is contained. Example:
” ”

The different methods hide information to vary-
ing degrees. Pseudo replaces some information,
but, for example, may retain information about
time between different events by shifting dates con-
sistently. For Class, there is still information about
the type of PHI found, which is missing for Mask.
Remove removes not only the PHI itself but also
the context surrounding it, i.e. all sentences where
a PHI is found are removed.

The pseudonymisation algorithm was similar to
the one described in (Dalianis, 2019; Berg et al.,
2019). The changes are based on the error analysis
in (Berg et al., 2019). The changes are:

• Uncommon names are replaced with uncom-
mon names.

• The number of tokens of each PHI instance is
kept.

• The format of dates are kept.
• Tokens for Health Care Units are replaced

with the same strategy as the one used for
replacing. Locations in Dalianis (2019).

• Not all Health Care Units tokens are replaced,
but at least one token within every entity. Lo-
cations and named entities are replaced, while
for example tokens like ”hospital” or ”clinic”
are not replaced,

For each clinical NER corpus, 25 dataset vari-
ants were produced. The datasets had six levels of
de-identification based on f-scores, ranging from
not de-identified to increasingly larger percent-
ages of both true and false positives. The iden-
tified PHI were then managed using four different
concealment strategies: pseudonymising the PHI
(Pseudo), replacing the PHI with the classified PHI
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type (Class), masking the PHI (Mask) or removing
whole sentences containing PHI (Remove). This re-
sulted in 24 de-identified datasets and one original
dataset for training.

3.2 Materials
All corpora are contained in the research infras-
tructure Health Bank – the Swedish Health Record
Research Bank3. Health Bank contains electronic
patient records from over two million patients
from Karolinska University Hospital from the years
2006–2014.

PHI Corpus
The de-identification models was trained, as well
as evaluated, on the Stockholm EPR PHI Corpus
(Velupillai et al., 2009; Dalianis and Velupillai,
2010). The Stockholm EPR PHI Corpus consists
of 98 patient records in Swedish from five clinical
units at Karolinska University Hospital: neurology,
orthopaedia, infection, dental surgery and nutri-
tion. The corpus contains nearly 200,000 tokens
in total. The annotated classes are: Age, Full Date,
Date Part, First Name, Last Name, Health Care
Unit, Location and Phone Number distributed over
4,826 annotated entities. The dataset includes free
text and information about which section the text is
from. The distribution is imbalanced with roughly
3% of all tokens being part of an annotated entity.

Four out of five clinical units were used for train-
ing and the tuning of the hyper parameters. The
data from the neurology clinical unit was used for
the final evaluation.

Clinical Entity Recognition Corpora
The following three corpora were used for build-
ing and evaluating clinical NER models, with and
without de-identification.

Stockholm EPR Clinical Entity Corpus is a
corpus in Swedish for clinical NER with clinical
notes from an internal medicine emergency unit at
Karolinska University Hospital (Skeppstedt et al.,
2014). The corpus was annotated by three annota-
tors; the annotation process and the resulting cor-
pus are described in (Skeppstedt et al., 2014; Kvist
et al., 2011). The dataset is annotated with the la-
bels: Explicit Disorder, Implicit Disorder, Finding,
Drug and Body structure distributed over totally
7,946 annotated entities.

Stockholm EPR (Adverse Drug Event) ADE
Corpus is a corpus in Swedish for adverse drug

3Health Bank, http://dsv.su.se/healthbank

events, annotated with clinical named entities (Hen-
riksson et al., 2015). The clinical notes are ex-
tracted from the larger Health Bank by extracting
data with ICD-10 codes marking an adverse drug
event. The dataset uses the labels Disorder, Find-
ing, Drug, ADE Cue and Body structure distributed
over totally 3,789 annotated entities.

Stockholm EPR Cervical Cancer Corpus is a
corpus in Swedish with clinical records for patients
with a cervical cancer diagnosis. The texts are
annotated with the labels Finding, Disorder and
Body part, distributed over totally 7,663 annotated
entities. The annotation process is described in
(Weegar et al., 2015).

Eponym Corpus
An additional corpus was constructed in order to
enable a more thorough analysis of the impact on
eponyms. The dataset is a subset of a larger corpus
extracted from Health Bank, with over 213 million
tokens. For each of the 12 most common eponyms,
one hundred sentences in which the eponym ap-
peared were extracted.

3.3 Experimental setup

In the analyses of the clinical NER corpora, First
Name and Last Name are merged to Person and
Date Part and Full Date to Date. Explicit disorder,
Implicit Disorder and Disorder are similarly all
merged to one category. In the analyses, we present
results averaged over the three corpora.

The PHI models are evaluated on the subset
of Stockholm EPR PHI Corpus that they are not
trained on. The main evaluation is a binary evalua-
tion to investigate how many non-PHI that are clas-
sified as PHI. The evaluation is also token-based,
meaning that they are evaluated on a per-token ba-
sis. The system’s ability to locate where an PHI
begins and another ends is not of great importance
for the replacement step, but instead the focus is on
whether tokens are replaced or not.

For each clinical NER corpus, the system trained
for finding clinical entities was basic. CRFSuite
was used with word features and orthographic fea-
tures. Due to the large number of datasets no hyper-
parameter tuning was done. The hyperparameter’s
used are the default parameters for CRFSuite, but
with an added c1 of 0.1 and a c1 of 0.2. 5-fold
cross validation was used.

The overlap of classified clinical entities and PHI
are investigated, to see how they relate to each other.
For class, mask and pseudo this overlap leads to a

http://dsv.su.se/healthbank
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loss of information and training examples for the
clinical NER task. The overlap is analysed on a
token level, since one PHI entity may span multiple
clinical entities, or only parts of a clinical entity.

In comparison to the other concealment strate-
gies, the de-identification’s precision with Remove
has a clear impact in terms of the overlap between
clinical entities and PHI. Sentences with a co-
occurrence of at least one token classified as a PHI
and an annotated clinical entity are removed with
this method. This means that there are fewer exam-
ples of clinical entities in the datasets de-identified
with Remove as the concealment strategy. In the co-
occurrence analysis, the co-occurence is measured
to get information about how the identification of
PHI affects the clinical entity information when
using the Remove method.

4 Results

The results for PHI identification cross-validated
on the PHI corpus are first presented to provide an
estimate of the performance of each PHI model.
The impact of de-identification on the three clinical
NER corpora used for the downstream tasks are
then analysed in three different ways: (i) the over-
lap between predicted PHI and manually annotated
clinical entities, (ii) the co-occurrence of predicted
PHI and manually annotated clinical entities in the
same sentences, and (iii) the impact on downstream
clinical NER performance. Finally, the misclassifi-
cation of eponyms as PHI is specifically studied.

4.1 PHI Identification

The results from the development of PHI models
optimised for different F-scores are presented be-
low. The best combination of thresholds for each
F-score, F1, F4, F10, F20 and F40, are presented in
Tables 3 and 4 in the Appendix.

The cross-validated performance scores of the
PHI identification models with adjusted marginal
scores are shown in Table 1. As expected, with
increased bias, recall increases at the expense of
precision. While the recall improves from model F1

to model F40 by a total of 7 percentage points, the
precision drops by as much as 83 percentage points.
As expected, the F1-score is highest when using
the model optimised for F1. The highest number
of false positives was observed for the class Health
Care Unit.

PHI Model P R F1

F1 96.07 92.82 94.41
F4 77.82 97.55 86.57
F10 44.95 99.53 61.93
F20 26.47 99.72 41.83
F40 12.74 99.94 22.60

Table 1: Token-based binary evaluation of the
de-identification (PHI) models with differently set
marginal scores, optimised for a particular F-score. P
stands for precision, R for recall and F1 for F1-score.

4.2 Overlap Analysis
Only 1% of clinical entities are affected by the
de-identification process for F1, in terms of partial
overlap with PHI entities. As expected, a larger
recall bias leads to an increasing amount of tokens
being classified as PHI. As many as around one
third of all clinical entities are classified as PHI by
the F40 model. As can be seen in Figure 1, Health
Care Unit, in comparison to other PHI classes, over-
laps more with clinical entities for the models with
low precision, while Person overlaps more with
other PHI in the models with high precision. In
relation to the number of classified cases, Loca-
tion is, however, the PHI class that overlaps the
most with the clinical entities (26% of all classified
locations).

The different clinical entities are affected to dif-
ferent degrees. As can be seen in Figure 1, the
clinical entity that overlaps the most with PHI is
Drug, and the one that overlaps the least with PHI
is Finding.

4.3 Co-occurrence Analysis
As can be seen in Figure 2, the Remove con-
cealment strategy leads to the removal of a large
amount of clinical entities. As expected, the PHI
identification models with lower precision and
higher recall removes more PHI compared to the
other models. For F1, F4, F10 and F20, a greater
degree of sentences without clinical entities are re-
moved than with clinical entities. For F40, there is
an equal amount removed.

While there is little overlap between the PHI
class Age and clinical entities, a disorder is men-
tioned in 67% of sentences with an age annotation
in F1, for example 82 year old man with Alzheimers.
With the Remove concealment strategy, these men-
tions of disorders will be removed from the de-
identified dataset.
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Figure 1: Presentation of clinical entities replaced during de-identification and which label they were classified
as. The number shown for each index is the how many overlaps per identified PHI in total, and the colour of each
column represents the percentage of clinical entities (see left column) that are overlapped for each clinical entity
class.

Figure 2: The figure presents the number of sentences with a co-occurrence of a clinical entity and a predicted
PHI.
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Figure 3: The impact on predictive performance, in terms of relative F1-score, when training clinical NER models
with de-identified data (compared to without de-identification). Results for the target clinical entity classes are
shown for five different PHI identification models and four different concealment strategies.

4.4 Downstream NER Performance

As can be seen in Figure 3, the choice of con-
cealment strategy for de-identification has a large
impact on downstream clinical NER performance.
With the Pseudo concealment strategy, the over-
all performance across models is fairly limited,
whereas the impact is somewhat larger with the
Mask and Class concealment strategies, with very
little difference between them. A much bigger, neg-
ative impact is observed when applying the Remove
concealment strategy.

The impact on the downstream clinical NER
tasks are also different across PHI models. As ex-
pected, the performance tends to get increasingly
worse the more the PHI model is trained to priori-
tise recall over precision. However, with Pseudo,
Class and Mask, the differences are fairly small for
the F1, F4 and F10 PHI models. With Remove, on
the other hand, the differences across PHI models
are markedly more pronounced.

The impact on performance is not equal across
clinical NER classes. Overall – across PHI mod-
els and concealment strategies – the most negative
impact was observed for the Drug class (-3.9%),
followed by the Disorder class (-3.0%), the Body
Part class (-1.7%) and the Finding class (-1.4%).

Across concealment strategies, the Drug class was
almost invariably the most impacted clinical en-
tity, with the exception of the F20 PHI model, with
relative F1-scores ranging from -1.9% to -9.1%.

The least impacted class varied across PHI mod-
els, but was mostly Body Part or Finding, with
relative F1-scores ranging from -0.4% to -5.4%. In
almost all cases, a monotonic decrease in perfor-
mance is observed as the PHI models are giving
increasing priority to recall at the expense of pre-
cision. Across PHI models, a similar pattern is
observed, with the performance on the Drug class
being negatively affected the most, ranging from
-0.8% to -9.1%. However, with Remove, there is a
greater impact on the Disorder class than the Drug
class. For all concealment strategies, the Finding
class is the least affected.

4.5 Eponym Analysis

According to previous studies, medical eponyms
risk being mistaken as identifiable information, as
they are derived from a personal name.

Throughout the three corpora, 21 different
eponyms occurred, with a total of 57 mentions.
With 43% of eponyms only being mentioned once,
it would not be possible to make any conclu-
sions based on that data. Therefore, an eponym
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Figure 4: The figure shows how many percent of each eponym that are missclassified as PHI in the Eponym Corpus
for different five PHI identification models, F1, F4, F10, F20 and F40.

dataset was created to be able to study the effect on
eponyms further.

In the training data from the PHI corpus, Parkin-
son occurs 11 times, Bechterew 4 times, Walden-
ström 2 times, Alzheimer 1 time and Romberg 1
time. As shown in Figure 4, the eponyms that oc-
curred in the training data are affected to a lesser
extent than those that did not. Sjögren syndrome
and von Willebrand disease are regardless of con-
text classified as surnames by all models, together
with Grave’s disease. Hodgkin lymphoma and Ray-
naud syndrome, are never mentioned in the training
set, but are classified as surnames less often than
for example Waldenström. This is despite Walden-
ström being in the training data. With the F40 PHI
identification model, almost all eponyms are clas-
sified as PHI, where 60% are misclassified as Last
Name and 15% as First Name.

To summarise the analysis, the overlap for
eponyms with PHI is greater than for disorders
in general. The eponyms most likely to be affected
by de-identification are those which bear a resem-
blance to common Swedish last names.

5 Discussion

In contrast to the findings by both Deleger et al.
(2013) and Obeid et al. (2019), a small negative
impact was indeed observed regardless of the pre-
cision and recall of the PHI model used for de-
identification. However, the impact is very small
unless the F40 PHI model or the Remove conceal-
ment strategy is used.

The worst performing model in (Stubbs et al.,
2015) had a token-based binary precision of 76%
(and a recall of 52%). The only models with an
estimated precision above this in our study is F1

and F4. Despite the clear difference in precision
between F1 and F10, F10 gives a high recall 99.5%
for PHI identification, see Table 1, and the conceal-

ment strategies Pseudo, Class and Mask still allow
for good downstream results. The trade-off be-
tween the level of de-identification and data utility
may vary depending on the information sensitivity
of the data, and assessments should be made on a
case-by-case basis. According to our experiments
it is to a certain extent, possible to raise recall at
the expense of precision without affecting down-
stream performance. It is also important to balance
this with the chosen concealment method, as they
affect the utility to varying degrees. For example,
F40 may be appropriate to combine with Pseudo,
but not with Remove. Another possibility would
be to use different concealment methods for differ-
ent PHI, since some are not as sensitive as others,
and create a recall bias for some labels but not for
others.

PHI models with low precision combined with
Pseudo as concealment strategy seem to have a
much smaller impact on downstream tasks. A po-
tential cause may be that not all Health Care Unit
tokens were affected by the pseudonymisation.

In this study, the de-identification process is per-
formed after manual annotation process of the clin-
ical entity corpora. If the annotation process was
performed after the de-identification, and there was
more data available than could be annotated, the
Remove method may have less impact.

Based on this study, certain PHI classes have
a higher risk of overlapping with relevant clinical
information than others. We have, however, not
investigated how the precision and recall of specific
PHI labels affect downstream tasks. The analysis of
eponyms, where 75% are classified as either First
Name or Last Name by the F40 PHI identification
model, indicates that certain classes may have a
greater impact on downstream tasks than others.
The eponym analysis also indicates that, while the
downstream impact is small on the clinical NER
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corpora, other tasks may be affected to a greater
extent. As eponyms risk being misclassified as PHI,
there may be a need, if the diseases are relevant to
the task, to deal with them specifically, for example
by adding rules to avoid being unrecognised as
disorders.

This study has focused on utility for clinical
entity recognition. Future research may investigate
how de-identification impacts other downstream
tasks. It may also be of interest to have people
read through the texts and see if they are readable
and possible to use for research in more qualitative
research on electronic health records.

6 Conclusion

This study demonstrates that corpora de-identified
using PHI models with a moderate to high precision
lead to similar performance when used for down-
stream clinical NER tasks. The impact is, however,
affected by both the choice of concealment strategy
and the trade-off between precision and recall, in
particular when the precision is low.

Optimising the PHI identification model for F4

gives a relatively lower precision of 77.82% and a
higher recall of 97.55%. Compared to using a stan-
dard F1-optimised model for de-identification, this
results in higher privacy and a relatively small neg-
ative impact on downstream clinical named entity
recognition.

This study indicates that it is possible to increase
the recall of models for identifying sensitive in-
formation without negatively affecting the use of
de-identified text data for training models for clini-
cal named entity recognition

Furthermore the overlap analysis showed that
with lower precision, there is an increase of overlap
between clinical information and automatically la-
belled PHI. Some PHI labels overlap with clinical
entities more than others. Different clinical enti-
ties are also more likely to be affected than others,
like Drug. Eponyms may also risk being misclassi-
fied as last names, and studies interested in those
may need to take extra precautions to handle those
properly.
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A Appendices

A.1 Hyperparameters for the PHI NER

Parameters Options
Linesearch MoreThuente, StrongBacktracking, Backtracking
Max iterations 50, 100, 150, 200, 250
Min freq 0, 3, 5
Period 5, 10, 15
Num memories 3, 6, 9, 12
c1 0.1, 0.05, 0.01, 0.05, 0.001, 0,0005
c2 0.1, 0.05, 0.01, 0.05, 0.001, 0,0005
epsilon 1e-02, 1,E-03, 1,E-04, 1,E-05, 1,E-06
delta 1e-02, 1,E-03, 1,E-04, 1,E-05, 1,E-06
transitions? True, False
states? True, False

Table 2: This is the options used for the hyper-parameter optimisation with random search. The bold ones are the
parameters that together produced the best results for the 100 iterations.

A.2 Thresholds based on Grid Search

Main Non-PHI Threshold Alt PHI Threshold
0.99999, 0.9999, 0.999, 0.99,
0.95, 0.90, 0.85, 0.80,
0.75, 0.7, 0.6

0.00001, 0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05, 0.1,
0.2, 0.3, 0.4

Table 3: This table shows the options for the grid search used for choosing marginal thresholds for the different
PHI models.

Optimised Main Non-PHI Threshold Alt PHI Threshold
F1 0.75 0.1
F4 0.99 0.05
F10 0.999 0.001
F20 0.9999 0.0001
F40 0.99999 0.00001

Table 4: This table shows the best threshold for the marginal probability score for the predicted non-PHI label
(Main Non-PHI Threshold) and the threshold for the next most probable label (Alt PHI Threshold) based on a grid
search.


