Skip to main content

Distributed Optimization and Federated Learning in Emerging Smart Networks

About the project
The goal of this project is to solve theoretical and practical challenges in distributed optimization and learning in smart networked systems. We wish to design fast and practical algorithms that have theoretical convergence guarantees. Two concrete topics we are focusing on are 1) safe resource allocation in power networks to avoid systems breakdown and 2) efficient asynchronous parallel and distributed optimization (better step sizes and delay-tolerant algorithm design).

Background
Networked systems such as power networks and IoT systems are important in our life. To make these systems “smart” (e.g., saving cost or improving utility), we need to learn models from data, which is equivalent to the solving of optimization problems. Consequently, designing efficient algorithms to solve optimization problems in these systems is of strong practical significance. Moreover, theoretical convergence analysis is also dispensable to these algorithms to guarantee their reliability.

About the Digital Futures Postdoc Fellow
Xuyang Wu is a Postdoctoral researcher at KTH Digital Futures, co-supervised by Prof. Mikael Johansson at KTH (DCS, EECS) and Prof. Sindri Magnússon at SU (DSV). He received a B.S. degree in Applied Mathematics from Northwestern Polytechnical University, China, in 2015, and a PhD degree in Communication and Information System at the University of Chinese Academy of Sciences, China, in 2020. He was a finalist for the best student paper award at  IEEE ICCA 2019. His current research interests include distributed optimization and federated learning. In particular, he focuses on algorithmic foundations, convergence analysis, and resource efficiency in emerging systems such as IoT and cyber-physical systems.  More information can be found at his homepage: http://xuyangwu.github.io/

Main supervisor
Mikael Johansson, Professor, Division of Decision and Control Systems, School of EECS, KTH

Co-supervisor
Sindri Magnússon
, Associate Professor, Department of Computer and Systems Science, Stockholm University

Contacts

Photo of Xuyang Wu

Xuyang Wu

Digital Futures Postdoctoral Fellow, Postdoc project: Distributed Optimization and Federated Learning in Emerging Smart Networks

xuyangw@kth.se
Photo of Mikael Johansson

Mikael Johansson

Professor, Division of Decision and Control Systems at KTH EECS, Supervisor for postdoc project Distributed Optimization and Federated Learning in Emerging Smart Networks, Digital Futures Faculty

+46 8 790 74 36
mikaelj@kth.se
Picture of Sindri Magnússon

Sindri Magnússon

Associate professor, Department of Computer and Systems Sciences at Stockholm University, Vice Chair Working group Cooperate, Co-PI of research project Decision-making in Critical Societal Infrastructures (DEMOCRITUS), Co-PI of research project Data-Driven Control and Coordination of Smart Converters for Sustainable Power System Using Deep Reinforcement Learning at C3.ai DTI, Co-Supervisor for postdoc project Distributed Optimization and Federated Learning in Emerging Smart Networks, Digital Futures Faculty

+46 8 16 11 15
sindri.magnusson@dsv.su.se