Group 1		
Number	Name of student:	Preliminary project title
1	Ivan Zivkovic	GPU accelerated atomistic spin dynamics
2	Mukhammadiusuf Ergashev	Al-assisted study of topological spin textures
3	Theofanis Georgakopoulos	Towards interpretable random forests
4	Kaushiki Brahma	Safety and Sound: Integrating spatial, acoustic, and perceptual data in the EV zone in Stockholm
5	Siying Chen	Reliable and efficient ML workload scheduling in edge computing
6	Samuel Kostic	Topology of HiCap data
7	Alice Bradlaw	Multiphysics modeling of a novel brain therapy
8	Giorgio Diena	Al Positioning of Human Body Models
9	Ludwig Millberg	Computer vision and Al-driven insights for human-centric warehouse digitalization
10	Anna Jandura-Cessna	Embedded HI
11	Abed Hameed	Modelling, analysis and resynthesis of multimodal multiparty human-human interactions
12	Emil Karlsson	A low-cost platform for real-time signal processing
13	Jacob Westergren	Token-based sign language processing with large language models
14	Gustav Eckerbom	Neural Processing Units for Embedded, Power-Smart Computation
15	Guangyuan Li	Al-based parameter estimation from intravoxel incoherent motion data
16	Ramón Padilla Roca	Machine Learning for Traffic Flow Estimation from Acoustic Data
17	Mingcheng Kou	Gamification of a Model-Based Platform for Movement Assessment and Visualization
18	Yiyu Sun	A Web-based App design for a real-time motion tracking system based on wearbles
19	Emre Kizilirmak	Combining model-driven analysis with machine learning to develop brain activity based biomarkers of Parkinson's diseases
20	Leith Hussein	Diffusion Models in Over-the-Air Computation
21	Örn Segerstedt	Al-generation of pure question-based learning material
22	Edgar Palynski	Al-generation of pure question-based learning material
23	Qingyang Qiu	iCTG - Al-assisted interpretation of fetal heart rate tracings for increased precision and improved outcomes for mother and baby
24	Tianzheng Dong	Al-based Early Warning System
25	Cay Lindberg	Optimizing usability of a hybrid mock loop with digital tools
26	CAMILLA DE AMICIS	Artificial Intelligence-Empowered Helmet Safety Evaluation
27	Lucrezia De Amicis	Machine Learning-Accelerated Virtual Testing for Automotive Head Impacts
28	Jinghan Xu	Evaluating the Role of Transport Networks in Promoting Fair Greenness Exposure in Cities: A Travel Demand-Based Approach
29	Patrik Larsson	Al-powered reading support for young learners
30	Elias Hedlin	Empowering Learners Against Cognitive Offloading: Promoting Self-Regulated Learning through Large Language Models
31	Julian Berrio Quintero	Development of a Digital Twin for a Free-Running Scale Ship Model
32	Oskar Ljung	Annotating Engagement Levels in NeuroEngage DatasetAnnotating Engagement Levels in NeuroEngage Dataset for Automatic Engagement Detection